
01

Audit Report
April, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

04

01

05

08

09

10

Techniques and Methods

Issue Categories

Overview

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer

0504

TrustPad is a decentralized multi-chain fundraising platform enabling
projects to raise capital and promise safety to early-stage investors.

Overview

TrustPad

Name: TrustPad

Symbol: TPAD

Decimals: 9

2% re-distribution fee on each transaction

Contract: TrustPad.sol

Description Report: TrustPad.md

01

The scope of this audit was to analyse TrustPad.sol smart contract’s
codebase for quality, security, and correctness.

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC20 transfer() does not return

boolean

ERC20 approve() race

Dangerous strict equalities

Tautology or contradiction

Return values of low level calls

Missing Zero Address Validation

https://trustpad.io/
https://bscscan.com/address/0xADCFC6bf853a0a8ad7f9Ff4244140D10cf01363C#code
https://drive.google.com/file/d/1qaf39he9DUgBcXRyHT7F_Ng1962YQeI9/view?usp=sharing

0502

Private modifier

Revert/require functions

Using block.timestamp

Multiple Sends

Using SHA3

Using suicide

Using throw

Using inline assembly

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

0203

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

04

Number of issues per severity

Open

Type High

Closed

Low

0 0

0 0

10

51

Medium Informational

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

Low level severity issues

Informational

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

Medium level severity issues

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

High severity issues

04

Issue Categories
Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0505

1.

ERC20 approve() race

Medium severity issues

Reference:

https://docs.google.com/document/
d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

https://medium.com/mycrypto/bad-actors-abusing-erc20-approval-to-
steal-your-tokens-c0407b7f7c7c

https://eips.ethereum.org/EIPS/eip-20

The standard ERC20 implementation contains a widely-known racing
condition in its approve function, wherein a spender is able to witness
the token owner broadcast a transaction altering their approval, and
quickly sign and broadcast a transaction using transferFrom to move the
current approved amount from the owner’s balance to the spender. If
the spender’s transaction is validated before the owner’s, the spender is
able to spend their entire approval amount twice.

Possible Solution: make sure to create user interfaces in such a way that
they set the allowance first to 0 before setting it to another value for the
same spender

Issues Found – Code Review / Manual Testing

None.

High severity issues

[FIXED]SafeMath library not imported.
Note: If the contract is going to be compiled with solc >=0.8.0. There is
no need to import SafeMath library, SafeMath is already integrated with
solc>=0.8.0. Operators automatically revert on overflows

Low level severity issues

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://medium.com/mycrypto/bad-actors-abusing-erc20-approval-to-steal-your-tokens-c0407b7f7c7c
https://eips.ethereum.org/EIPS/eip-20

0506

Informational

[FIXED] [#L3] Incorrect Versions of Solidity: Pragma version>=0.7.0
allows old versions, Using an old version prevents access to new Solidity
security checks. We recommend using the latest version of solidity.

[FIXED] [#L140] A check can be added in the function excludeAccount,
to avoid excluding Contract Address itself.
Recommendation: require(account != address(this), “Cannot exclude
self contract”)

[FIXED] [#L149-160] function includeAccount and function
_getCurrentSupply [#L270-280] consuming Extra Gas: .length of non-
memory array is used in the condition for loop. In this case, every
iteration of the loop consumes extra gas. Holding its value in a local
variable is more gas efficient. Also if array.length is large enough, the
function can exceed the block gas limit. So, it is recommended to avoid
loops with an unknown number of steps

[FIXED] [#L150] It should be included instead of excluded in the require
function

[FIXED]
[#L163]function setFeeless(address account, bool isFeeless),
[#L241]function _getValues(uint256 tAmount, bool isFeeless),
[#L248]function _getTValues(uint256 tAmount, bool isFeeless),
Shadows [#L106] function isFeeless(address account)

1.

2.

3.

4.

5.

0507

Gas Optimization

Public functions that are never called by the contract should be declared
external to save gas.

0508

Automated Testing

Slither

Mythril

Smartcheck

Solhint

Slither didn’t detect any high severity issues

Mythril didn’t detect any high severity issues

Smartcheck didn’t detect any high severity issues

08

Disclaimer

The audit does not give any warranties on the security of the code. One
audit cannot be considered enough. We always recommend proceeding
with several independent audits and a public bug bounty program to
ensure the security of the code. Besides, a security audit, please don’t
consider this report as investment advice.

09

07

Closing Summary

10

Several issues of medium and low severity have been reported during the
audit, out of which, most of them have been fixed. Some suggestions have
also been made to improve the code quality and gas optimization. There
were NO critical or major issues found that can break the intended
behavior.

17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

